Generation dispatch analysis for Karnataka: 2029-30

Preliminary Results

23-24 Nov 2020
Outline

Modelling inputs

Scenarios

Preliminary results

Conclusion
Modelling Inputs
Generation capacity

- State thermal (6100 MW) – Unit details
- State hydro (3782 MW) – Station details
- State gas (370 MW) – Station details
- Solar – 9386 MW
- Wind – 9820 MW
- Central Generating Stations (CGS) – State share: 5934 MW
Generation - Technical details

- Unit wise capacity, Heat rate, Fuel price
- Fixed & Variable cost
- CGS share
- Spinning reserves
- Storage capacity
- Minimum generation level (Technical minimum)
- Ramp up and ramp down rates
- Minimum up-time and down-time hours
- Start up cost
- Hydro operational characteristics (Monthly min, average & max)
- Inter-state transmission capacity
Installed capacity – State generation and IPP

<table>
<thead>
<tr>
<th>Generation plant name</th>
<th>Composition</th>
<th>Total capacity (MW)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>State thermal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raichur thermal power station</td>
<td>$7 \times 210 + 1 \times 250$</td>
<td>1,720</td>
<td>Existing</td>
</tr>
<tr>
<td>Bellary thermal power station</td>
<td>$2 \times 500 + 1 \times 700$</td>
<td>1,700</td>
<td>Existing</td>
</tr>
<tr>
<td>Yermarus thermal power station</td>
<td>2×800</td>
<td>1,600</td>
<td>Existing</td>
</tr>
<tr>
<td>State hydro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sharavathy generating station</td>
<td>10×103.5</td>
<td>1,035</td>
<td>Existing</td>
</tr>
<tr>
<td>Nagjhari power house</td>
<td>6×150</td>
<td>900</td>
<td>Existing</td>
</tr>
<tr>
<td>Varahi hydro electric project</td>
<td>4×115</td>
<td>460</td>
<td>Existing</td>
</tr>
<tr>
<td>Gerusoppa hydro electric project</td>
<td>4×60</td>
<td>240</td>
<td>Existing</td>
</tr>
<tr>
<td>Other hydro projects</td>
<td>-</td>
<td>1,021</td>
<td>Existing</td>
</tr>
<tr>
<td>State gas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yelahanka combined cycle power plant</td>
<td>1×370</td>
<td>370</td>
<td>Existing</td>
</tr>
<tr>
<td>IPP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udupi power corporation limited</td>
<td>2×600</td>
<td>1,200*</td>
<td>Existing</td>
</tr>
</tbody>
</table>
Installed capacity – CGS and bilateral share

<table>
<thead>
<tr>
<th>Generation plant name</th>
<th>State share (MW)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramagundam thermal power plant</td>
<td>481</td>
<td>Existing</td>
</tr>
<tr>
<td>Talcher super thermal power station</td>
<td>356</td>
<td>Existing</td>
</tr>
<tr>
<td>Simhadri super thermal power plant</td>
<td>178</td>
<td>Existing</td>
</tr>
<tr>
<td>Neyvelli thermal power station</td>
<td>570</td>
<td>Existing</td>
</tr>
<tr>
<td>Vallur thermal power station</td>
<td>156</td>
<td>Existing</td>
</tr>
<tr>
<td>Tuticorin thermal power station</td>
<td>202</td>
<td>Existing</td>
</tr>
<tr>
<td>Mejia thermal power station</td>
<td>200</td>
<td>Existing</td>
</tr>
<tr>
<td>Koderma thermal power station</td>
<td>200</td>
<td>Existing</td>
</tr>
<tr>
<td>Kudgi super thermal power station</td>
<td>1295</td>
<td>Existing</td>
</tr>
<tr>
<td>Godhna thermal power station</td>
<td>816</td>
<td>Planned</td>
</tr>
<tr>
<td>Madras atomic power station</td>
<td>37</td>
<td>Existing</td>
</tr>
<tr>
<td>Kudankulam nuclear power plant</td>
<td>454</td>
<td>Existing</td>
</tr>
<tr>
<td>Kaiga nuclear power plant, unit 1 to 4</td>
<td>289</td>
<td>Existing</td>
</tr>
<tr>
<td>Kaiga nuclear power plant, unit 5 and 6</td>
<td>700</td>
<td>Planned</td>
</tr>
<tr>
<td>Bilateral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priyadarshini Jurala hydroelectric project</td>
<td>117</td>
<td>Existing</td>
</tr>
<tr>
<td>Tungabhadra hydroelectric project</td>
<td>14</td>
<td>Existing</td>
</tr>
</tbody>
</table>
Total Installed capacity

<table>
<thead>
<tr>
<th>Energy Type</th>
<th>Installed Capacity (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>10674</td>
</tr>
<tr>
<td>Hydro</td>
<td>3782</td>
</tr>
<tr>
<td>Nuclear</td>
<td>1480</td>
</tr>
<tr>
<td>Gas</td>
<td>370</td>
</tr>
<tr>
<td>Solar</td>
<td>9386</td>
</tr>
<tr>
<td>Wind</td>
<td>9820</td>
</tr>
</tbody>
</table>

- Coal: 30%
- Solar: 26%
- Wind: 28%
- Hydro: 11%
- Nuclear: 4%
- Gas: 1%
Storage capacity

• Battery storage
 • 200 MWh

• Pumped Hydro Storage (PHS)
 • Sharavathi : 2000 MW/∼12000 MWh
 • Saundatti : 1200 MW/ ∼9600 MWh
Load, Solar and Wind profiles

- Load profiles: Hourly
 - State load as single zone (19th EPS)

- RE profiles: Hourly
 - Solar profiles generated using CSTEP’s CSTEM-PV tool
 - Wind profiles generated using NREL’s SAM tool
State demand Curve

Peak demand: 18,328 MW
Solar profile

May month

Generation in MW

Time in hours

www.cstep.in
Wind profile
Scenarios
Scenarios

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Description</th>
</tr>
</thead>
</table>
| Base case | **Installed capacity**
All the state owned existing generation plants, existing CGS state share and planned state share from upcoming CGS generation
Solar and wind capacity
Solar and wind capacity as per Karnataka Renewable Energy Development Limited (KREDL) plan
State demand as per 19th EPS
No state generation retirement
With inter-state transmission lines |
| Scenario 1 | Base case with battery storage and PHS |
| Scenario 2 | Base case with battery storage, PHS and Raichur thermal power station (RTPS) retirement |
Preliminary results
Preliminary Results

• Day profile - Hourly
 • Peak load, Peak Solar and Wind, Peak of Solar + Wind

• Seasonal profile - Hourly
 • Summer – Apr to May
 • Rainy – Jun to Sep
 • Autumn – Oct to Nov
 • Winter – Dec to Feb

• Annual results
 • Capacity factor
 • Hydro and VRE curtailment
 • Energy Mix
 • Production cost breakup
Day dispatch – base case

Peak demand: 12th Feb @ 8.30 AM

Light demand: 01st Jun @ 3.30 AM
Day dispatch – base case

Peak Solar: 21st May @ 1.30 PM

Peak Wind: 17th Jul @ 4.30 PM
Day dispatch – base case

Peak of Solar + Wind: 21st Jun @ 1.30 PM
Seasonal dispatch – base case

Summer – Apr to May

Rainy – Jun to Sep
Seasonal dispatch – base case

Autumn – Oct to Nov

Winter – Dec to Feb
Day dispatch – scenario comparison

Peak demand: 12th Feb @ 8.30 AM
Day dispatch – scenario comparison

Light demand: 01st Jun @ 3.30 AM

Scenario 1

Scenario 2
Day dispatch – scenario comparison

Peak Solar: 21st May @ 1.30 PM

Scenario 1

Scenario 2
Day dispatch – scenario comparison

Peak Wind: 17th Jul @ 4.30 PM
Seasonal dispatch – scenario comparison

Summer – Apr to May

Scenario 1

Scenario 2
Seasonal dispatch – scenario comparison

Rainy – Jun to Sep

Scenario 1

Scenario 2
Seasonal dispatch – scenario comparison

Autumn – Oct to Nov

Scenario 1

Scenario 2
Seasonal dispatch – scenario comparison

Winter – Dec to Feb

Scenario 1

Scenario 2
RE curtailment

Base case

Scenario 1

Scenario 2
Hydro curtailment

Base case

scen1234_KN_IsGS_altHR - Hydro Curtailment by Month-Hour - KN - 2030 - 1
VRE curtailment
Generation and PLF – base case
Generation and PLF – scenario 1
Generation and PLF – scenario 2
Production cost

Production cost

Cost (crores INR)

Basecase
Scenario1
Scenario2

Capacity cost
Fuel Cost
Conclusion
Conclusion

• Except in case of peak demand supply is generally able to meet projected demand

• Based on evolution of demand, storage will be essential to meet peak demand for 2030

• Retirement of RTPS as per CEA plan, will necessitate further capacity addition

• Opportunity for further upscaling VRE deployment
Thank you